| KS2 - Year 4 |  |  |
| :---: | :---: | :---: |
| National Curriculum | Key Performance Indicators | Working at Greater Depth |
| Number and Place Value |  |  |
| Count in multiples of $6,7,9,25$ and 1000 | - Can count in multiples of 6,7 and 9 <br> - Can count in multiples of 25 and 100 and explain the link between the two amounts | - Can explain reasoning in counting activities e.g. When I count in 25 s the numbers will always end in 5 or O . Is this sometimes, always or never true? |
| Find 1000 more or less than a given number | - Can find 1000 more than a given number and explain which digit changes <br> - Can find 1000 less than a given number and explain which digit changes | - Can explain how to change the value of a digit using addition and subtraction e.g. How can you change 17685 to 10685 using subtraction? |
| Count backwards through zero to include negative numbers | - Can count backwards in a range of multiples to include negative numbers and understand the value of the digits | - Can explain reasoning in counting activities <br> - Can solve problems involving negative numbers |
| Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones) | - Can identify the number of thousands, hundreds, tens and ones in a 4-digit number <br> 4NPV-1 Know that 10 hundreds are equivalent to 1 thousand, and that 1,000 is 10 times the size of 100 ; apply this to identify and work out how many 100s there are in other four-digit multiples of 100 . <br> 4NPV-2 Recognise the place value of each digit in fourdigit numbers, and compose and decompose four-digit numbers using standard and non-standard partitioning | - Can solve problems involving 4-digit numbers <br> - Can understand that numbers can be partitioned in different ways to give the same value |


| Order and compare numbers beyond 1000 | - Can identify the larger of two 4-digit numbers and explain reasoning <br> - Can position 4-digit numbers on a number line and explain reasoning about where they are positioned <br> 4NPV-3 Reason about the location of any four-digit number in the linear number system, including identifying the previous and next multiple of 1,000 and 100, and rounding to the nearest of each. <br> 4NPV-4 Divide 1,000 into $2,4,5$ and 10 equal parts, and read scales/number lines marked in multiples of 1,000 with $2,4,5$ and 10 equal parts | - Can order values linked to money and measurement including where conversion is needed |
| :---: | :---: | :---: |
| Identify, represent and estimate numbers using different representations | - Can use equipment to represent numbers and to explain reasoning about the size of numbers <br> 4NPV-1 Know that 10 hundreds are equivalent to 1 thousand, and that 1,000 is 10 times the size of 100; apply this to identify and work out how many 100s there are in other four-digit multiples of 100. | - Can use scripts from other number systems to solve problems |
| Round any number to the nearest 10 , 100 or 1000 | - Can round numbers to the nearest 10 <br> - Can round numbers to the nearest 100 <br> - Can round numbers to the nearest 1000 <br> - Can explain the rules of rounding | - Can solve problems involving rounding, including linked to measures e.g. What is the smallest and largest number that can round to 200 when rounded to the nearest 10 and 100? |



## Addition and Subtraction

| Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate | - Can use place value to calculate mentally <br> - Can add and subtract multiples of 1,10,100 and 1000 <br> - Can subtract by finding the difference <br> - Can calculate mentally by reordering <br> - Can calculate mentally by compensating <br> - Can use a written methods to add two 4-digit numbers, including bridging 10 and 100 <br> - Can use a written methods to subtract two 4-digit numbers, including bridging 10 and 100 <br> - Can use a written methods to add and 3 and 4-digit number together, including bridging 10 and 100 <br> - Can use a written methods to subtract a 3-digit number from a 4-digit number, including bridging 10 and 100 <br> - Can reflect on when it is appropriate to use a standard written method in an addition or subtraction calculation with up to 4 digits <br> 4NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 100), | - Can create calculations that should be solved mentally and justify why they should be solved using a given mental method <br> - Can create calculations that should be solved using a formal written method and justify why a written method would be more efficient than a mental method <br> - Can fill in a missing box from a variety of written addition or subtraction calculations |
| :---: | :---: | :---: |
| Estimate and use inverse operations to check answers to a calculation | - Can estimate the answer of an addition or subtraction up to 4 digits <br> - Can use addition and subtraction to calculate the inverse | - Can explain their reasoning why some addition and subtraction calculations are correct and why some are not |
| Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why. | - Can use a calculation skill in a problem using units of measure (km, m, $\mathrm{cm}, \mathrm{mm}, \mathrm{kg}, \mathrm{g}, \mathrm{l}, \mathrm{ml}$, hours, minutes and seconds) | - Can solve missing information problems e.g. 2500 g of flour is needed. We currently have 750 g . How much more do we need to buy? <br> - Solve complex problems including those with more than one or two steps |

## Multiplication and Division

| Recall multiplication and division facts for multiplication tables up to $12 \times 12$ | - Can explain how to use known facts to derive others <br> - Can recall the $2 x 5 x$ and $10 x$ tables from Year 2 <br> - Can recall the $3 x 4 x 8 x$ tables from Year 3 <br> - Can recall the $6 x$ table <br> - Can recall the $7 x$ table <br> - Can recall the $9 x$ table <br> - Can recall the 11x table <br> - Can recall the $12 x$ table <br> - Can derive related division facts <br> - Understands that division cannot be done in any order <br> 4NF-1 Recall multiplication and division facts up to $12 \times 12$ and recognise products in multiplication tables as multiples of the corresponding number. |
| :---: | :---: |
| Use place value, known and derived facts to multiply and divide mentally, including: multiplying by $O$ and 1 ; dividing by 1; multiplying together three numbers | - Understands how a multiplication fact can be used to multiply by a multiple of 10 <br> - Understands how a multiplication fact can be used to multiply by a multiple of 100 <br> - Understands how to multiply 3 one-digit numbers together <br> - Understands the effect of multiplying by 1 and 0 <br> - Understands the effect of dividing by 1 <br> - Understands how a multiplication fact can be used to solve a division calculation <br> 4NF-3 Apply place-value knowledge to known additive and multiplicative number facts (scaling facts by 100) <br> 4MD-1 Multiply and divide whole numbers by 10 and 100 (keeping to whole number quotients); understand this as equivalent to making a number 10 or 100 times the size. <br> 4MD-3 Understand and apply the distributive property of multiplication. |

- Understands how to multiply 3 numbers together
- Understands how a multiplication such as 8 x 6 could be adapted in a range of ways to make it easier to calculate e.g. $8 x$ $3 \times 2$ or $6 \times 4 \times 2$
- Can solve open ended/complex problems linked to multiplication and division e.g. Tom has 4 times as many sweets as Sam they have 100 altogether. How many does Sam have?
- Can solve reasoning problems linked to multiplication and division e.g. True or false: when you multiply a number it always gets bigger

| Recognise and use factor pairs and commutativity in mental calculations | - Can identify factors of a 2-digit number <br> - Understands that multiplication can be done in any order <br> 4MD-2 Manipulate multiplication and division equations, and understand and apply the commutative property of multiplication. | - Can solve open ended problems linked to factors e.g. Which two digit numbers are abundant numbers? |
| :---: | :---: | :---: |
| Multiply two-digit and three-digit numbers by a one-digit number using formal written layout | - Can use a formal written method to multiply TU by U <br> - Can use a formal written method to multiply HTU by U | - Can solve missing box calculations involving a written multiplication method and reason about how the answer was found |
| Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects. | - Can solve word problems involving multiplication <br> - Can solve word problems involving division <br> - Can solve scaling problems involving measures <br> - Can solve correspondence problems e.g. There are 3 starters, mains and desserts on a menu, how many possible meals could you have? <br> 4NF-2 Solve division problems, with two-digit dividends and one-digit divisors, that involve remainders | - Can solve "I think of a number" problems that involve understanding of the inverse calculation for multiplication and division |

## Fractions, Decimals \& Percentages

| Fractions, Decimals \& Percentages |  |  |
| :---: | :---: | :---: |
| Recognise and show, using diagrams, families of common equivalent fractions | - Can use common multiples to generate equivalent fractions. <br> - Can simplify fractions using common factors | - Can list equivalent fractions to a given fraction and another, and another... |
| Count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten. | - Understands hundredths are dividing an object or a number into 100 equal parts. <br> - Understand tenths are dividing an object or a number into 10 equal parts. <br> - Understands hundredths can be made by dividing tenths into 10 equal parts. <br> - Can find and place hundredths on a number line. <br> - Can use hundredths in money and measure <br> - Can compare and order numbers to $2 d p$ | - Can explain the impact of adding tenths and hundredths to a given number. |
| Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including nonunit fractions where the answer is a whole number | - Can use unit fractions to solve a problem. <br> - Can use non-unit fractions to solve a problem. | - Can solve problems involving finding the whole where the fractional quantity is known e.g. If $2 / 5$ of a number is 30 , what's the number? |
| Add and subtract fractions with the same denominator | - Can add and subtract fractions with a common denominator $4 F-1$ Reason about the location of mixed numbers in the linear number system <br> 4F-2 Convert mixed numbers to improper fractions and vice versa. <br> 4F-3 Add and subtract improper and mixed fractions with the same denominator, including bridging whole numbers | - Can find the missing fraction in an addition or subtraction calculation to make the answer. |


| Recognise and write decimal equivalents of any number of tenths or hundredths | - Can identify and calculate $\frac{1}{10}$ as a decimal <br> - Can identify the pattern when finding other tenths. <br> - Can identify and calculate $\frac{1}{100}$ as a decimal <br> - Can identify the pattern when finding other hundredths. | - Can identify the missing decimal in a sequence. |
| :---: | :---: | :---: |
| Recognise and write decimal equivalents to $1 / 4,1 / 2$ and $3 / 4$ | - Can recall decimal equivalent to $1 / 2$ <br> - Can recall decimal equivalent to $1 / 4$ <br> - Can recall decimal equivalent to $3 / 4$ | - Can round a decimal to the next whole number |
| Find the effect of dividing a oneor two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths | - Can explain the effect of dividing a one-digit number by 10 <br> - Can explain the effect of dividing a two-digit number by 10 <br> - Can explain the effect of dividing a one-digit number by 100 <br> - Can explain the effect of dividing a two-digit number by 100 <br> 4MD-1 Multiply and divide whole numbers by 10 and 100 (keeping to whole number quotients); understand this as equivalent to making a number 10 or 100 times the size. | - Can derive other related decimal facts from known equivalences. <br> - Can they reason about equivalent calculations e.g. True or False: 23.4 /100 $=2.34 / 10$ and explain reasoning |
| Round decimals with one decimal place to the nearest whole number | - Can identify the nearest whole number to a one decimal place number. | - Can make a number to 2dp from 3 given digits that will round to a given number |
| Compare numbers with the same number of decimal places up to two decimal places | - Can compare and order 1 dp numbers on a number line. <br> - Can compare 2dp numbers on a number line | - Can compare and order a mixture of 1dp and 2dp numbers <br> - Can place an additional decimal number in between two existing decimal numbers. |
| Solve simple measure and money problems involving fractions and decimals to two decimal places. | - Knows how many 10ps are in a $£ 1$ <br> - Knows how many 1 ps are in a $£ 1$ <br> - Knows how many centimetres are in a metre. <br> - Can solve problems involving money to 2dp <br> - Can solve problems involving length to $2 d p$ | - Can apply their knowledge of tenths and hundredths to Km. |

## Geometry: Properties of Shape

Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes

Can recall and recognise in a variety of shapes that:

- an equilateral triangle has three equal sides and three equal angles
- isosceles triangles have two equal sides and two equal angles
- right angled triangles have one right angle
- scalene triangles have no equal sides and no equal angles
- triangles cannot have more than one obtuse angle
- squares have four equal sides and four right angles
- rectangles have two pairs of equal and parallel sides and four right angles
- parallelograms have two pairs of equal and parallel sides
- rhombuses have four equal sides, two pairs of parallel sides
- trapeziums have one pair of parallel sides
- kites have two pairs of equal sides which are adjacent, two equal angles
- Can recall the names of other polygons and their associated numbers of sides

4G-2 Identify regular polygons, including equilateral triangles and squares, as those in which the side-lengths are equal and the angles are equal. Find the perimeter of regular and irregular polygons.

- Can identify acute angles on their own and within shapes
- Can identify obtuse angles on their own and within shapes
- Can compare two or more angles up to $180^{\circ}$
- Can explain whether they agree or disagree with a statement e.g. A rectangle is a regular shape because it has four right angles; A quadrilateral can sometimes only have three right angles.
- Can use properties of acute and obtuse angles to reason about missing angles.

| Identify lines of symmetry in 2-D shapes presented in different orientations | - Can recall and recognise in different shapes that: <br> - A square has four lines of symmetry <br> - A rectangle has two lines of symmetry <br> - A rhombus has two lines of symmetry <br> - A parallelogram has no lines of symmetry <br> - A trapezium may or may not have a line of symmetry <br> - A kite has one line of symmetry <br> - An equilateral triangle has three lines of symmetry <br> - An isosceles triangle has one line of symmetry <br> - A regular polygon has the same of lines of symmetry as it has sides <br> 4G-3 Identify line symmetry in 2D shapes presented in different orientations. Reflect shapes in a line of symmetry and complete a symmetric figure or pattern with respect to a specified line of symmetry. |
| :---: | :---: |
| Complete a simple symmetric figure with respect to a specific line of symmetry | Can complete a pattern drawn on a square grid with: <br> - one line of symmetry drawn parallel to the gridlines <br> - one line of symmetry drawn at an angle to the gridlines <br> - two lines of symmetry <br> 4G-3 Identify line symmetry in 2D shapes presented in different orientations. Reflect shapes in a line of symmetry and complete a symmetric figure or pattern with respect to a specified line of symmetry. |

- Can say if a statement is always true, sometimes true or never true e.g. Diagonals of a quadrilateral are also lines of symmetry
- Can identify a line of symmetry that is not parallel to the grid lines.


## Geometry: Position \& Direction



| Measurement |  |  |
| :---: | :---: | :---: |
| Convert between different units of measure [for example, kilometre to metre; hour to minute] | - Knows and understands the relationships between familiar units of measurement <br> - Can use multiplication and division to aid conversion. <br> - Can convert km into $m$ and vice versa. <br> - Can convert an hour into minutes and vice versa. <br> - Can convert I into ml and vice versa. <br> - Can convert kg into g and vice versa. <br> - Can suggest the most appropriate unit of measure. | - Can find a total distance/weight/ capacity where the quantities added are all different units of measure and need to be converted to the same measure e.g. 1.5 km $+600 \mathrm{~m}+1900 \mathrm{~m}$ |
| Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres. | - Can measure sides of a rectangle to calculate the perimeter. <br> - Can generalise about the perimeter of a rectangle using words and symbols. <br> - Can use the formulae $2(L+W)$ to calculate perimeter of a rectangle. <br> - Can work out the perimeter of irregular shapes. | - Can identify the perimeter of a shape using properties of shapes to establish the length of some of the sides. |
| Find the area of rectilinear shapes by counting squares | - Can relate area to arrays and multiplication. <br> - Can find the area of a rectangle by counting squares. <br> - Can generalise about the area of a rectangle using words and symbols. | - Can identify the area of a shape using properties of shapes to establish the length of some of the sides. |
| Estimate, compare and calculate different measures, including money in pounds and pence | - Can use decimal place value knowledge to compare different measures. <br> - Can calculate with measures | - Can explain what the value of digits are in $1.5 \mathrm{~m}, 1.5 \mathrm{~km}$ etc |
| Read, write and convert time between analogue and digital 12and 24 -hour clocks | - Can read and understand 24-hour time <br> - Can relate 24 hour notation to am and pm <br> - Can covert 12 hr into 24 hour and vice versa. | - Can order 12 hour and 24 hour clock times and fill in missing times. |
| Solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days | - Can solve problems involving familiar conversions. <br> - Can interpret the answer in more than one measure | - Can create a problem involving converting measure for someone to solve. |



